• 内网
  • 搜索
  • 学院概况
    • 学院概况
    • 联系我们
  • 师资力量
  • 招生培养
    • 招生信息 Admission
    • 招生资讯
    • 学院课程
  • 科研创新
    • 人工智能理论及系统中心
    • 语言模型与人机交互中心
    • 科学与工程智能中心
    • 社会科学智能中心
    • 具身智能与计算机视觉中心
  • 最新资讯
    • 学院动态
    • 活动预告
    • 通知公告
    • 采购公告
  • 人才招聘
  • 学术论坛
    • 论坛预告
    • 论坛回顾

面包屑

  • 首页
  • 学术论坛
  • 论坛回顾
  • 预告|大师讲坛:两届哥德尔奖得主滕尚华教授开讲

预告|大师讲坛:两届哥德尔奖得主滕尚华教授开讲

2025-12-18 学术论坛

深圳河套学院有幸邀请到国际计算机理论领域泰斗、两届哥德尔奖得主、南加州大学计算机科学与数学系讲席教授滕尚华(Professor Shang-Hua Teng)于12月23日,亲临SLAI开设讲座,引领师生系统深入学习理论前沿,欢迎学院师生及对该领域感兴趣的产学研界同仁参与。

Lecture Topic

Understanding and Characterizing Regularization

About the Speaker

滕尚华 教授

国际计算机理论领域泰斗、两届哥德尔奖得主、南加州大学计算机科学与数学教授

Professor Shang-Hua Teng (USC)

Two-time Gödel Prize laureate, Professor of Computer Science and Mathematics at the University of Southern California

 

滕尚华教授在计算机理论领域建树卓越。他是南加州大学计算机科学与数学系讲席教授,同时身兼美国计算机协会(ACM)会士、美国工业与应用数学学会(SIAM)会士、斯隆基金会会士等重要身份。

在2008年与2015年,凭借在算法平滑分析理论的开发,以及为网络系统设计突破性的近线性时间拉普拉斯求解器这两项杰出成果,两次斩获理论计算机科学领域的世界权威奖项——哥德尔奖。西蒙斯基金会誉其为“世界上最具原创性的理论计算机科学家之一”,并在2014年授予他西蒙斯研究员(Simons Investigator)称号,以支持其长期基于好奇心的基础研究。

他还荣获2009年福克森奖(Fulkerson Prize)、2023年中国计算机学会海外华人科学技术奖、2021及2025年ACM STOC“时间检验奖”(分别表彰其在平滑分析与最大流计算方面的贡献)、2022年ACM SIGecom“时间检验奖”(Test of Time Award,因解决纳什均衡计算复杂性问题)、2020年Phi Kappa Phi教师表彰奖(因其著作《可扩展的数据与网络分析算法》)、2011年ACM STOC最佳论文奖(因改进最大流-最小割算法)。

此外,他合作开发了首个针对任意三维域的最优形状Delaunay网格生成算法,解决了鲁棒统计学中的Rousseeuw-Hubert回归深度猜想,并解决了组合博弈论中关于Sprague-Grundy定理的两个长期悬而未决的复杂性理论问题。在产业界,他曾与Xerox、NASA、英特尔、IBM、Akamai和微软合作,并在编译器优化、互联网技术和社交网络等领域获得了多项专利。

Shang-Hua Teng is a USC University Professor of Computer Science and Mathematics. He is a fellow of SIAM, ACM, and Alfred P. Sloan Foundation, and has twice won the Gödel Prize, first in 2008, for developing smoothed analysis, and then in 2015, for designing the breakthrough scalable Laplacian solver.

Citing him as, “one of the most original theoretical computer scientists in the world”, the Simons Foundation named him a 2014 Investigator to pursue long-term curiosity-driven fundamental research.

He also received the 2009 Fulkerson Prize,2023 Science & Technology Award for Overseas Chinese from the China Computer Federation, 2021 and 2025 ACM STOC Test of Time Awards (for smoothed analysis and max-flow computation), and 2022 ACM SIGecom Test of Time Award (for settling the complexity of computing a Nash equilibrium.

In addition, he co-developed the first optimal well-shaped Delaunay mesh generation algorithms for arbitrary three-dimensional domains, settled the Rousseeuw-Hubert regression-depth conjecture in robust statistics, and resolved two long-standing complexity-theoretical questions regarding the Sprague-Grundy theorem in combinatorial game theory.

For his industry work with Xerox, NASA, Intel, IBM, Akamai, and Microsoft, he received fifteen patents in areas including compiler optimization, Internet technology, and social networks.

Abstract

The quintessential learning algorithm of empirical risk minimization (ERM) is known to fail in various settings for which uniform convergence does not characterize learning. Relatedly, the practice of machine learning is rife with considerably richer algorithmic techniques, perhaps the most notable of which is regularization. Nevertheless, no such technique or principle has broken away from the pack to characterize optimal learning in these more general settings. The purpose of this work is to precisely characterize the role of regularization in perhaps the simplest setting for which ERM fails: multiclass learning with arbitrary label sets. Using one-inclusion graphs (OIGs), we exhibit optimal learning algorithms that dovetail with tried-and-true algorithmic principles: Occam’s Razor as embodied by structural risk minimization (SRM), the principle of maximum entropy, and Bayesian inference. We also extract from OIGs a combinatorial sequence we term the Hall complexity, which is the first to characterize a problem’s transductive error rate exactly. Lastly, we introduce a generalization of OIGs and the transductive learning setting to the agnostic case, where we show that optimal orientations of Hamming graphs–judged using nodes’ outdegrees minus a system of node-dependent credits–characterize optimal learners exactly. We demonstrate that an agnostic version of the Hall complexity again characterizes error rates exactly, and exhibit an optimal learner using maximum entropy programs.

Joint work (COLT 2024) with Julian Asilis, Siddartha Devic, Shaddin Dughmi, and Vatsal Sharan

 

Host

欧阳万里教授,深圳河套学院副院长

Professor Wanli Ouyang , Deputy Dean, SLAI

 

Date & Time

2025年12月23日(周二)

14:00–15:30

Tuesday, 23 December 2025

14:00–15:30

 

Venue

深圳河套学院B411阶梯教室

(深圳市福田区福保街道红棉路6号,地图导航“深圳河套学院-南门”)

Room B411, Shenzhen Loop Area Institute

(6 Hongmian Rd, Fubao Sub-Street, Futian District, Shenzhen, navigate to "Shenzhen Loop Area Institute (South Gate)" on the map.)

相关推荐

SLAI Seminar】第二十三期回顾|跨越虚实鸿沟:基座模型驱动的具身智能泛化之路

【SLAI Seminar】第二十二期回顾|从单智能体到多智能体:强化学习的演进、协作与决策挑战
【SLAI Seminar】第二十一期回顾|行人重识别的演进与挑战:从单人到群体,从地面到空地
关注我们
联系方式
  • 招生:admission@slai.edu.cn 教授招聘:FacultyHiring@slai.edu.cn 校企合作:coop@slai.edu.cn 人才招聘:staff_careers@slai.edu.cn 招投标:bidding@slai.edu.cn
  • 院务办公室:executiveoffice@slai.edu.cn 学生事务:student@slai.edu.cn 院长信箱:deanoffice@slai.edu.cn 财务:financeoffice@slai.edu.cn 地址:福田保税区红棉道6号深圳河套学院
探索更多
  • 学院概况 人才招聘 内网

版权所有 © 深圳河套学院 粤ICP备14099122号-14 

​